A Bayesian approach to modeling antimicrobial multidrug resistance

  05 January 2022

Multidrug resistance (MDR) has been a significant threat to public health and effective treatment of bacterial infections. Current identification of MDR is primarily based upon the large proportions of isolates resistant to multiple antibiotics simultaneously, and therefore is a belated evaluation. For bacteria with MDR, we expect to see strong correlations in both the quantitative minimum inhibitory concentration (MIC) and the binary susceptibility as classified by the pre-determined breakpoints. Being able to detect correlations from these two perspectives allows us to find multidrug resistant bacteria proactively. In this paper, we provide a Bayesian framework that estimates the resistance level jointly for antibiotics belonging to different classes with a Gaussian mixture model, where the correlation in the latent MIC can be inferred from the Gaussian parameters and the correlation in binary susceptibility can be inferred from the mixing weights.

Further reading: Plos One
Author(s): Min Zhang, Chong Wang, Annette O’Connor
Smart Innovations  
Back

OUR UNDERWRITERS

Unrestricted financial support by:

Antimicrobial Resistance Fighter Coalition

Bangalore Bioinnovation Centre

INTERNATIONAL FEDERATION PHARMACEUTICAL MANUFACTURERS & ASSOCIATIONS

BD





AMR NEWS

Every two weeks in your inbox

Because there should be one newsletter that brings together all One Health news related to antimicrobial resistance: AMR NEWS!

Subscribe

What is going on with AMR?
Stay tuned with remarkable global AMR news and developments!

Keep me informed